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Introduction

The Level Tank is a small-scale Laboratory
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Level (h):

0—-—5V —> 0—20cm

This is approximately. Unless you need a more accurate
relation, you can assume this range in your applications

- Use the “To PC” connectors

Control Signal (u):
0—-5V

- Use the “From PC” connectors

Level Tank

The water level is measured by a level sensor

The pump should be controlled by an external
voltage signal at the “From PC connector

LEVEL TANK LM-900 LEVEL CONTROL SYSTEM
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: 1
h = A_(Kpu — Fout)
t

Where:
Fiy - flow into the tank, Fi,= K,u
F,,+ - flow out of the tank
* A, is the cross-sectional area of the tank



Can be manually adjusted

- For real system: a handle on the
red tank

- For Simulator: A Numeric control
on the Front Panel (HMI)

. 1
h = A_ [Kp(u — Ug) — Fout]
t

/ Uy is the bias voltage needed to get any flow (with

The level is
measured

u less than ug there is no flow into the tank)

We need to find the unknown model parameter(s) using System Identification methods

(A¢ can be found by measuring the radius of the tank) At ~ 78.5 cm



#1
Level Tank model — Integrator Model

. 1
h = A_[Kp(u — Uy) — Fout]
t

Uy is the bias voltage needed to get any flow (with
u less than u, there is no flow into the tank)

* K, [cm3/s)/V] is the pump gain
e F,,[cm3/s]isis the outflow through the valve You can use this model in your
e A, [cm?] is the cross-sectional area of the tank linear Kalman filter algorithm

* u [V]isthe control signal to the pump




#2
Level Tank model - 1.order linear system

A more accurate model may, e.g., be:
: 1
h=— |K, (w — up) — Kyh|
t

where K, is the valve gain on the outflow.

Ug is the bias voltage needed to get any flow (with

It is more normal to put it like this: u less than u, there is no flow into the tank)

h=——h+-"2u (The general term is x = ax + bu)

The model above is a so-called Time-constant system (1.order linear system).



#3
Level Tank model - 1.order Nonlinear Model

The following model is even more accurate:

. 1
h = A_t [Kp(u — Ug) — Ky pgh]

This is a so-called 1.order nonlinear model

h [cm] is the level

u [V] is the pump control signal to the pump

Ug is the bias voltage needed to get any flow (with u
less than u, there is no flow into the tank)

A¢[cm?] is the cross-sectional area of the tank
K,[(cm3/s)/V]is the pump gain

K, is the valve constant. It depends on the opening of e.g., the Least Square method
the valve, but if the opening is constant, K, is constant

p is the is the density of the liquid (water: 1 kg/m?)

g is the is the gravity constant, 9.81 m/s?

You may find K,, and K;, using,



“Black Box Model”

 The Real Level Tank is only available in the
Laboratory

 The Level Tank is also provided as a “black box”.
Actually, it is just a LabVIEW SubVI where the Block

Diagram and the Process Parameters are hidden for
you.

* Useful when you are working outside the
Laboratory



“Real Process” - “Black Box Model”

a I
Level

U — — h

Tank

Control Signal Level

N /

You can assume that the following model is a

good representation of the Black Box Model:
This means you need to unknown

: 1
h = T [Kpu — Fout] parameters using some kind of
t system identification method



System Identification

1. Excite the real system, and log input and output:

In general, System Identification
consists of the following steps:

Make sure to include all
these steps in your solution.

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

Input sequence. ,,,,,(k) Real
T system

Measured response. v,,,,(k)

Y

Loggin
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2. Split data, for estimation and for validation :

rorat(k) [ Split data
— -
(e.g. into
Vieotall k) two
S

halves)

e e.srim(]‘.)
E— estim(k)
> II‘.(,H({(]\—)

—— 1 vatia(k)

3. Estimate model:

Ugstim (]‘."
— -
System

Vesem(K) identification
Cestim( ™ |

Model. M
=

4. Check (validate) model using e.g. simulation:

”\'m‘id(]‘v) - Real
system

Yvaga(k)

Model
M

4‘ ‘sim (]")

(Simulation) /

If quite similar . the model is

probably good.




Theory

System ldentification W

You can find the Model Parameters using, e.g.,:
* The Least Square Method

* Then adjust and fine-tune the Model Parameters
using the “Trial and Error” method if necessary

O, = (PTD) 1PpTy



1. Exite the Real System, e.g.
A

y

u

Data Logging T\M

4

—

~ ,

2. Log Data to File

Input sequence, u,,,.,,(k)

Real
system

Logging

| Measured response ., ¥,ai(k)

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

3. Use the Logged Data to find the model or the model parameters



Least Square Example A ¢

Given:
x = ax + bu

We want to find the unknown a and b.

This glves [x u] [a]

N ——

Y ¢ 5
=[5

Then we need to discretize:

Xk+1 — Xk
TS

X =~

Theory

This gives:

Xrk+1 — Xk a
— [xk uk]

5 T, p? [b]
v

Based on logged data we get:

Xk—1 — Xg—2

Ts a
X — Xk—1 = ;k—z Zk—z [b]

T 1 e |
Xrk+1 — Xk k % k

TS

Y

The we find the uknows a and b using LS:

O,s = (PTD) 1Ty



Trial & Error Method M

Created by you in LabVIEW

u >EETR—

Compare
—
Process
or “Black-box” Simulator =

Adjust model parameters and then compare the response from the
real system with the simulated model. If they are “equal”, you have
probably found a good model (at least in that working area)
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Model Validation Vi

Make sure to validate that your model works as expected

Example of simple model validation:

u >m—L>|/

N
>\
\.
~Compare
Real y
Process
>



. 1
h = —|K,u—Fqy.]

Model Values A

If you don't have the red Level Tank nearby, you may use the
following values as a starting point for your simulations:

A =785 cm
K, = 16.5cm?/s

F,,: should be adjustable from your Front Panel
The range for F,,; could, e.g.., be 0 < F,,; < 40cm?/s
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B} Feedback Control.vi Front Panel on State Estimator. lvproj/My Computer
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State Estimation in LabVIEW
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Level System Model

. 1 For the real system, only the level (h) is measured, so we want to
h = A [Kpu_Fout] use a Kalman Filter for estimating the outflow (Fout) of the tank
t (Which we will use in a Feedforward control later).

1. Set x1=h and x2=Fout and assume that Fout is constant. Find the state-space model for
the system. % = Ax + Bu
y = Cx + Du

2. Then you can find the discrete state-space model for the system as well

Xik+1 — Axk “+ Buk

Y — ka + Duk

3. The discrete state-space model can then be used in a Kalman Filter algorithm.



Kalman Filter in LabVIEW 2%‘

Start using a simulator (model). When the simulator is working
properly, switch to the real process. You may also add some noise to
your model to make it more realistic.

E] . hart_x1 |
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v
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LabVIEW Example (Kalman Filter) | ~0,

E Kalman Filter on Water Tank using While Loop.vi Front Panel
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LabVIEW Example (Kalman Filter)

alman Filter on Water Tank using While Loop.vi Block Diagram -
£ Kalman Filter on Water Tank using While Loop.vi Block Diag o X
File Edit View Project Operate Tools Window Help =
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Feedforward Control

State estimator
(Observer or |[=—
Kalman Filter)

Feedforward

Disturbance
Uy d
< e u
yl"
Sensor
Feedback

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]




Feedforward Control

* In this model is Fout a noise signal/disturbance that
we want to remove by using Feedforward.

* We want to design the Feedforward controller so

that Fout is eliminated.

— Solve for the control variable u, and substituting the
process output variable h by its setpoint hsp.

— Fout is not measured, so you need to use the estimated
value instead. Assume that the setpoint is constant.

We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.



LabVIEW Example (PID + Kalman + FF) ,@t

B Feedforward Control.vi

File Edit View Project Operate Tools Window Help
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